On finding optimal quantum query algorithms using numerical optimization

Māris Ozols,
Laura Mančinska

University of Latvia, 29 Rainis Boulevard, Riga LV-1459, Latvia

Abstract

We propose a method that can be used to construct a quantum query algorithm for the given Boolean function. This method is based on numerical optimization. We apply it to all 3 and 4 argument Boolean functions. We also show how one quantum query algorithm can be modified to compute other Boolean functions.

1. Quantum query algorithms

A query algorithm computes Boolean function by querying its arguments. The complexity of query algorithm is the number of queries made. A quantum query algorithm can query all arguments in a superposition. We consider oracle matrices of the following type:

$$
O=\left(\begin{array}{cccc}
(-1)^{x_{1}} & 0 & \cdots & 0 \\
0 & (-1)^{x_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (-1)^{x_{n}}
\end{array}\right)
$$

Quantum query algorithm is a sequence of unitary transformations:

$$
\begin{equation*}
Q=U_{m} \cdot O \cdot U_{m-1} \cdot \ldots \cdot U_{1} \cdot O \cdot U_{0} \tag{1}
\end{equation*}
$$

and the final amplitude distribution is $Q|0\rangle$.

2. General $n \times n$ unitary matrix

One can use the so called Givens rotations to transform any unitary matrix U to a diagonal form

$$
\begin{equation*}
D=U \cdot \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} G_{i j} \tag{2}
\end{equation*}
$$

where D is diagonal unitary matrix, i.e. $d_{k l}=\delta_{k l} \exp \left(i \varphi_{k}\right)$. Givens rotation $G_{i j}$ is an $n \times n$ identity matrix modified at positions (i,i), $(i, j),(j, i)$ and (j, j). General Givens rotation is determined by a general 2×2 unitary matrix:
$\left(\begin{array}{ll}g_{i i} & g_{i j} \\ g_{j i} & g_{j j}\end{array}\right)=\left(\begin{array}{cc}e^{i(\delta+\sigma+\tau)} \cos \theta & e^{i(\delta+\sigma-\tau)} \sin \theta \\ -e^{i(\delta-\sigma+\tau)} \sin \theta & e^{i(\delta-\sigma-\tau)} \cos \theta\end{array}\right)$

If we multiply (2) from the right had side by the adjoints of $G_{i j}$, we obtain a formula for a general $n \times n$ unitary matrix U.

3. General quantum query algorithm

If we independently replace each of the U_{0}, \ldots, U_{m} in (1) with a general unitary matrix, we obtain a general quantum query algorithm. We can obtain any specific quantum query algorithm $Q\left(x_{1}, x_{2}, \ldots, x_{n}, m\right)$ by substituting each of the U_{0}, \ldots, U_{m} with an appropriate unitary matrix. $Q\left(x_{1}, x_{2}, \ldots, x_{n}, m\right)$ is a unitary matrix that depends on the input and on the number of queries made. The corresponding final amplitude distribution is

$$
\left|\psi\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}, m\right)\right\rangle=Q\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}, m\right)|0\rangle
$$

The result of computation is obtained by measuring $\left|\psi\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}, m\right)\right\rangle$ in some basis B. In order to obtain only 0 or 1 as the output, we divide the basis vectors of B into two parts - B_{0} and B_{1}. Without the loss of generality we can assume that the measurement is performed in the standard basis and B_{0} consists of the first b vectors of the standard basis.
Definition Query algorithm computes a Boolean function f if it returns the correct answer with probability $>1 / 2$ for each input.

By varying parameters $b(1 \leq b \leq n-1)$ and $m(1 \leq m \leq n-1)$ we obtain different query algorithm templates. For each template we perform a numerical optimization to find the best algorithm of this form. To obtain the best algorithm we maximize the worst case success probability.

4. NPN-equivalence

Definition The following logic gates are called trivial gates: - NOT - negation,

- ID - identity transformation,
- NOT_{i} - inversion of i-th argument,
- SWAP $_{i j}$ - swapping of i-th and j-th arguments.

Definition Two Boolean functions f and g are NPN-equal if a circuit for f can be made out of trivial gates and a circuit for g.
Example Boolean functions $f\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}$ and $g\left(x_{1}, x_{2}\right)=x_{2} \wedge x_{1}$ are NPN-equal:

The number of NPN-equivalence classes of Boolean functions of exactly n variables $F(n)$ (Sloane's A001528) is significantly less than the number of all Boolean functions:

n	0	1	2	3	4	5
$F(n)$	1	1	2	10	208	615904
$2^{2 n}$	2	4	16	256	65536	4294967296

Theorem All NPN-equal Boolean functions have the same quantum query complexity.

5. Results

We computed all NPN-equivalence classes of three and four argument Boolean functions. We took a representative from each class and applied the method described in Section 3 to it. For three argument functions we found one NPN-equivalence class with quantum query complexity less than the deterministic one:

$$
f=x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{3},
$$

Among four argument functions we found seven such classes:
$f_{1}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$,
$f_{2}=\left(!x_{1} \wedge!x_{2} \wedge x_{3} \wedge x_{4}\right) \vee\left(!x_{1} \wedge x_{2} \wedge!x_{3} \wedge x_{4}\right) \vee\left(!x_{1} \wedge x_{2} \wedge x_{3} \wedge!x_{4}\right) \vee$
$\left(x_{1} \wedge!x_{2} \wedge!x_{3} \wedge X_{4}\right) \vee\left(x_{1} \wedge!x_{2} \wedge x_{3} \wedge!x_{4}\right) \vee\left(x_{1} \wedge x_{2} \wedge!x_{3} \wedge!x_{4}\right)$,
$f_{3}=x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{3} \Leftrightarrow x_{4}$,
$f_{4}=\left(x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{3}\right) \vee\left(!x_{1} \wedge x_{3} \wedge x_{4}\right) \vee\left(x_{1} \wedge!x_{3} \wedge!x_{4}\right)$,
$f_{5}=\left(x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{3} \Leftrightarrow x_{4}\right) \vee\left(!x_{1} \wedge!x_{2} \wedge x_{3} \wedge x_{4}\right) \vee\left(x_{1} \wedge x_{2} \wedge!x_{3} \wedge!x_{4}\right)$,
$f_{6}=\left(x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{3}\right) \vee\left(x_{1} \Leftrightarrow x_{2} \Leftrightarrow x_{4}\right) \vee\left(x_{1} \Leftrightarrow x_{3} \Leftrightarrow x_{4}\right)$,
$f_{7}=\left(x_{1} \Leftrightarrow x_{2}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4}\right) \vee\left(x_{2} \wedge!x_{3} \wedge!x_{4}\right)$.

