On finding optimal quantum query algorithms using numerical optimization

Māris Ozols, Laura Mančinska

University of Latvia, 29 Rainis Boulevard, Riga LV-1459, Latvia

Abstract

We propose a method that can be used to construct a quantum query algorithm for the given Boolean function. This method is based on numerical optimization. We apply it to all 3 and 4 argument Boolean functions. We also show how one quantum query algorithm can be modified to compute other Boolean functions.

1. Quantum query algorithms

A query algorithm computes Boolean function by querying its arguments. The *complexity* of query algorithm is the number of queries made. A *quantum* query algorithm can query all arguments in a superposition. We consider oracle matrices of the following type:

0 =	$(-1)^{x_1}$	0		0)
	0	$(-1)^{x_2}$		0
	÷	÷	·.	:
	0	0		$(-1)^{x_n}$

Quantum query algorithm is a sequence of unitary transformations:

$$Q = U_m \cdot O \cdot U_{m-1} \cdot \ldots \cdot U_1 \cdot O \cdot U_0 \tag{1}$$

and the final amplitude distribution is $Q |0\rangle$.

2. General *n*×*n* unitary matrix

One can use the so called Givens rotations to transform any unitary matrix U to a diagonal form

$$D = U \cdot \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} G_{ij}$$

where *D* is diagonal unitary matrix, i.e. $d_{kl} = \delta_{kl} \exp(i\varphi_k)$. Givens rotation G_{ij} is an $n \times n$ identity matrix modified at positions (i,i), (i,j), (j,i) and (j,j). General Givens rotation is determined by a general 2×2 unitary matrix:

$$\begin{pmatrix} g_{ii} & g_{ij} \\ g_{ji} & g_{jj} \end{pmatrix} = \begin{pmatrix} e^{i(\delta+\sigma+\tau)}\cos\theta & e^{i(\delta+\sigma-\tau)}\sin\theta \\ -e^{i(\delta-\sigma+\tau)}\sin\theta & e^{i(\delta-\sigma-\tau)}\cos\theta \end{pmatrix}$$

If we multiply (2) from the right had side by the adjoints of G_{ij} , we obtain a formula for a general $n \times n$ unitary matrix U.

3. General quantum query algorithm

If we independently replace each of the $U_0, ..., U_m$ in (1) with a general unitary matrix, we obtain a general quantum query algorithm. We can obtain any specific quantum query algorithm $Q(x_1, x_2, ..., x_n, m)$ by substituting each of the $U_0, ..., U_m$ with an appropriate unitary matrix. $Q(x_1, x_2, ..., x_n, m)$ is a unitary matrix that depends on the input and on the number of queries made. The corresponding final amplitude distribution is

 $|\psi(x_1, x_2, ..., x_n, m)\rangle = Q(x_1, x_2, ..., x_n, m) |0\rangle$

The result of computation is obtained by measuring $|\psi(x_1, x_2, ..., x_n, m)\rangle$ in some basis *B*. In order to obtain only 0 or 1 as the output, we divide the basis vectors of *B* into two parts – B_0 and B_1 . Without the loss of generality we can assume that the measurement is performed in the standard basis and B_0 consists of the first *b* vectors of the standard basis.

Definition Query algorithm *computes* a Boolean function f if it returns the correct answer with probability > 1/2 for each input.

By varying parameters b ($1 \le b \le n-1$) and m ($1 \le m \le n-1$) we obtain different query algorithm templates. For each template we perform a numerical optimization to find the best algorithm of this form. To obtain the best algorithm we maximize the worst case success probability.

4. NPN-equivalence

Definition The following logic gates are called *trivial gates*:

NOT - negation,

(2)

- ID identity transformation,
- NOT_{*i*} inversion of *i*-th argument,
- SWAP_{ij} swapping of *i*-th and *j*-th arguments.

Definition Two Boolean functions f and g are NPN-equal if a	L
circuit for <i>f</i> can be made out of trivial gates and a circuit for <i>g</i> .	

Example Boolean functions $f(x_1, x_2) = x_1 \lor x_2$ and $g(x_1, x_2) = x_2 \land x_1$ are *NPN-equal*:

The number of NPN-equivalence classes of Boolean functions of exactly n variables F(n) (Sloane's A001528) is significantly less than the number of all Boolean functions:

n	0	1	2	3	4	5
F(n)	1	1	2	10	208	615 904
2 ^{2ⁿ}	2	4	16	256	65 536	4 294 967 296

Theorem All NPN-equal Boolean functions have the same quantum query complexity.

5. Results

We computed all NPN-equivalence classes of three and four argument Boolean functions. We took a representative from each class and applied the method described in Section 3 to it. For three argument functions we found one NPN-equivalence class with quantum query complexity less than the deterministic one:

$f = x_1 \Leftrightarrow x_2 \Leftrightarrow x_3$,

Among four argument functions we found seven such classes:

 $f_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4,$

 $f_2 = (!x_1 \land !x_2 \land x_3 \land x_4) \lor (!x_1 \land x_2 \land !x_3 \land x_4) \lor (!x_1 \land x_2 \land x_3 \land !x_4) \lor (x_1 \land !x_2 \land !x_3 \land x_4) \lor (x_1 \land !x_2 \land x_3 \land !x_4) \lor (x_1 \land x_2 \land !x_3 \land !x_4),$

$f_3 = x_1 \Leftrightarrow x_2 \Leftrightarrow x_3 \Leftrightarrow x_4,$

 $f_4 = (x_1 \Leftrightarrow x_2 \Leftrightarrow x_3) \lor (!x_1 \land x_3 \land x_4) \lor (x_1 \land !x_3 \land !x_4),$

 $f_5 = (x_1 \Leftrightarrow x_2 \Leftrightarrow x_3 \Leftrightarrow x_4) \lor (!x_1 \land !x_2 \land x_3 \land x_4) \lor (x_1 \land x_2 \land !x_3 \land !x_4),$

 $f_6 = (x_1 \Leftrightarrow x_2 \Leftrightarrow x_3) \lor (x_1 \Leftrightarrow x_2 \Leftrightarrow x_4) \lor (x_1 \Leftrightarrow x_3 \Leftrightarrow x_4),$

 $f_7 = (x_1 \Leftrightarrow x_2) \lor (x_1 \land x_3 \land x_4) \lor (x_2 \land !x_3 \land !x_4).$